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Abstract 

This paper explores parameter-based hypothesis tests for selecting between candidate models that predict an unknown 
variable from observations. This is the form of many time series models, classifiers, and data-fitting models. The basis for 
this paper is that if a model contains redundant terms the associated parameters can be set to zero without penalty. 
Hypothesis tests are proposed for assessing the statistical evidence for parameters taking non-zero values. These compare 
closely with standard criteria such as Akaike’s and the Bayesian information criterion. A numerical simulation is 
presented to illustrate the criteria. The link between selection criteria based on parameter distributions and those based 
on data distributions is relevant to techniques such as changepoint methods. Resampling and other similar techniques 
may be applied using this framework. 

Zusammenfassung 

Diese Arbeit untersucht auf Parametern basierende Hypothesentests zur Auswahl zwischen Modellen, die eine 
unbekannte Variable auf der Grundlage von Beobachtungen vorhersagen. Dies entspricht vielen Zeitreihenmodellen, 
Klassifizierern und Datenanpassungsmodellen. Die Grundlage dieser Arbeit ist die folgende Tatsache: wenn ein Model1 
redundante Terme enthllt, kiinnen die entsprechenden Parameter ohne Verluste gleich null gesetzt werden. Es werden 
Hypothesentests zur Beurteilung der statistischen Aussagekraft hinsichtlich Parametern vorgeschlagen, die Werte 
ungleich null annehmen. Diese Hypothesentests sind Standardkriterien wie dem Akaike-Kriterium und dem Bayesschen 
Informationskriterium sehr iihnlich. Die Kriterien werden durch eine numerische Simulation illustriert. Die Verbindung 
zwischen auf Parameterverteilungen beruhenden Selektionskriterien und auf Datenverteilungen beruhenden Selektions- 
kriterien ist relevant fiir Verfahren wie 2-B. Changepoint-Methoden. Resampling und Phnliche Methoden k6nnen in 
diesem Rahmen angewandt werden. 

Cet article explore les diffkrents tests d’hypothkse basks sur les paramtttres pour la sClection parmi des mod6les 
candidats qui prtdisent une variable inconnue B partir d’observations. C’est la forme de nombreux modBles de sCries 
temporelles, de classificateurs et de modtles d’ajustement aux donntes. L’idBe de cet article est que si un modile contient 
des termes redondants, les paramktres associCs peuvent &tre mis L?I zbro sans perte. Des tests d’hypothkse sont proposts 
pour estimer l’importance statistique des paramttres ayant des valeurs autres que z&o. Ces tests peuvent aisCment itre 
cornpar& $ des crit6res standards, tels le crittre d’Akaike ou le crittre d’Information Baysien. Une simulation numCrique 
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est prCsentCe afin d’illustrer les cridres. Le lien entre les critkres basks sur la distribution des paramktres et ceux basks sur 
la distribution des donntes est pertinent pour des techniques comme les mkthodes du point de changement. Le 
rikchantillonnage et autres techniques similaires peuvent ttre appliqukes en utilisant ce cadre. 

Keywords: Model selection; Akaike’s information criterion; Bayesian information criterion; Signal modelling; Data 
fitting; Changepoint methods; Neural networks; Polynomial fitting; System identification 

1. Introduction 

This paper explores one approach to the selec- 
tion of models, a problem with widespread applica- 
tions. The modelling problem being considered is 

the prediction of a data value from a set of realisa- 
tions of measured data. Such model selection is 
applicable to data fitting, time series model selec- 
tion, feature selection in classification, and com- 
plexity reduction in neural networks. In classifica- 

tion and learning problems the training time and 

the failure rate are increased by the presence of 
redundant complexity. The dangers of overfitting 

data are well-known. In this paper the analysis is 
restricted to candidate models that calculate a pre- 
diction using a linear combination of realisations of 
data which are either the measured data values 
directly or a non-linear (Volterra) expansion of the 
data. For example, the second-order expansion of 

the variables x1, x2, x3 is {x1, x2, x3,x:, xl, x:, 
x1x2, x2x3, x1x3}. These are ‘linear-in-the-para- 
meters’ models. 

Consider a model that has redundant complex- 

ity. The coefficients or parameters associated 
with the unnecessary terms should be zero. Sup- 
pose we compare the correct model for a data-set 
to another with additional terms (that is nested 

within a larger model). These terms will be redund- 
ant. This paper explores statistical tests on the 

parameters of a model, and by testing the hypothe- 
sis that the values of the additional parameters 
are zero we can evaluate the evidence for believ- 
ing that the additional complexity provides a 
useful contribution to the model. Only the case of 
prediction errors with a Gaussian distribution 
is considered, although the concept of testing 
the distributions of parameters is one that can 
readily be extended using numerical methods and 
resampling. 

The first section discusses the type of model and 

the requirements of an efficient and consistent se- 

lection criterion. The following sections present 
two fundamentally different approaches to testing 

the zero-parameter hypothesis. The first uses a clas- 
sical confidence interval test for both marginalised 
and unmarginalised distributions of the additional 
parameters, and this leads to a statistic in a similar 

form to AIC (Akaike’s information criterion) [l]. 
The second uses a Bayesian hypothesis test and the 

expressions for the values of the posterior probabil- 
ities of the two hypotheses lead to a modified form 

of the BIC (Bayesian information criterion) [lo]. 
Throughout this discussion the concepts and 
expressions are compared with standard 
techniques. The results of a numerical experiment 

are then presented to illustrate the performance 
of the criteria. 

2. The model selection problem 

2.1. Assessment of model selection criteria 

Model selection criteria are relative. No absolute 
measure of model fit exists, and if we do not include 
the ‘correct’ model in the set that we consider, then 

we will certainly make the wrong choice. It is gener- 
ally implicitly assumed that any criterion that will 
select the correct model over all others given a large 

amount of data will select the ‘most appropriate’ 
model from a set of wrong but approximately cor- 
rect models. This is also assumed when too few data 
points have been measured to select between candi- 
dates that are hard to distinguish. Exactly what the 
most appropriate model is depends on the situ- 
ation, but in many cases we are interested in mini- 
mising the prediction errors when new data are 
presented. 
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It is important to decide on a definition of the 
correct model. Consider a model that provides 
a prediction based on the observed data. Suppose 
that the prediction error is zero mean and is com- 
pletely uncorrelated with the observed data. Since 
the error has a mean of zero we cannot obtain 
a reduction in error variance by changing the para- 
meters of the model. If we are unable to find any 
further observations that provide information 
about the prediction error, that is are correlated 
with it in any way, then it is not possible to reduce 
this error and we have the ‘correct’ model. It may 
be possible to find equivalent models if new obseva- 
tions can be found that are exact functions (that is 
without additional random variations) of the re- 
quired set. An important result of this definition is 
that the correct model has the minimum error 

oariance. 

The performance of a model selection criterion 
can be assessed in a number of ways. The minimum 
error-variance property is useful in designing tests 
that exhibit one form of consistency. This is that if 
model ‘A’ is preferred to ‘B’, and model ‘B’ to ‘C’, 
then model ‘A’ will be preferred to model ‘C’. There 
is also an asymptotic consistency condition that 
requires that a minimum data-set size can be found 
for each false model, such that the correct model 
will be selected in preference with a probability of 
error less than a given value. This condition is 
important for defining an effective selection cri- 
terion. There are two effects of increasing the data- 
set size. First, the criterion must be able to distin- 
guish between increasingly similar models with de- 
creasing probability of error. Second, the criterion 
must include a penalty against complexity, or ‘Ock- 
ham factor’, so that models with redundant com- 
plexity are less likely to be chosen. 

The discussion is limited to the case where the 
errors in predictions take a Gaussian distribution. 
This is generally considered to be a reasonable 
assumption for linear models, but in the absence of 
better information it is perhaps the weakest as- 
sumption for non-linear models as well. If a differ- 
ent error model is proposed, this could easily be 
incorporated in the same manner. If it is then im- 
possible to find the posterior distribution of the 
parameters analytically, numerical methods could 
be used. 

2.2. Linear-in-the-parameters models 

Consider an observed data series {dij of size 
N with corresponding vectors xi of realisations of 
measured data. An example of a set of realisations 
of underlying variables Uj is the second-order 
Volterra expansion {ai, u:,uZ, uf, z4,uZ, . ..}. 
Linear-in-the-parameters models form a prediction 
of the data series from a linear combination of 
these realisations. Putting the parameters into 
a vector 0 we can write the prediction as ~70, 
and the mean-square prediction error estimate 
function as 

= rdd - 20’ rd + tlTRtJ , (1) 

where R, r, and rdd are the correlations of the 
realisations of the measured data and the data 
sequence being predicted. 

2.3. Probability distributions for model.9 

In this paper we will only consider models for 
which the distribution of prediction errors is Gaus- 
sian (see Section 2.1). Denoting the model structure 
as J%‘, the probability of a particular set of data 
being measured under that model and parameters 
8 is 

P(dl& Jf) = (2na,2)N,2 ’ exp[ -$‘“‘I. (2) 

For our present purposes, suppose that we do not 
have prior knowledge to say that the parameters 
should be, say, positive or negative. It seems 
reasonable then to assign a zero-mean prior distri- 
bution to the parameters. At this point we will 
assume that something is known about their mag- 
nitude. Using the principle of maximum entropy to 
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minimise the effect of the constraints on the uncer- 
tainty, this would suggest a Gaussian distribution. 
Let the variance of this be y2. This is the approxim- 
ate magnitude that we expect the parameters to 
take. This variance can in some cases be allowed 
to grow so that the prior becomes uniform in the, 
limit. 

Before finding the marginalised distribution 
p(d(A’), let P be the number of parameters and 
define 

2 

R,=R+&Ir 
NY 

(3) 

and V,(e) as V(6) but with R, substituted in. 
To find the marginalised distribution we have to 

integrate out the parameters: 

P(4J4 = P(46 4P(~I4d@ 
I 

= 
‘, 

(2n Cre y 
exp [ -,“,y(“] 

1 -8'8 
x py2)P/2 exp &2 

[ 1 de 

1 
’ 

= (27cCr,2y (27$)p’2 s 

exp [ - yr>(‘)]dtI 

s 1 1 

= (2xay2 (2rcyy 

xexp 

+ r&, - r;R,lrd) 1 de 

1 

det (R,)“’ 

where 8 is chosen to minimise the prediction-error 
variance: 

V,(6) = rdd - r,‘R,T 1 rd. (5) 

2.4. Distributions over some parameters 

In the next section we will consider methods of 
comparing two models, one being nested within the 
other. To do this we need to split the data and 
parameter vectors into elements that are common 
to both models and additional to the larger model 
(0, and 0,). Quantities referring to the model with 
only the common terms are subscripted with C. 

The common parameters can be integrated out 
of p(d1 8, A) as follows: 

5 1 -NV(e) 

= (2w,Z)N’2 exp 20: [ 1 

1 

[ 1 -@k- de X(2ny2)Pc'2 exp 32 c 
= s (2x Cry’2 (27ryy2 

xexp~-~~(e~,exp,~,de~. 

(6) 

In the case when &, = 0 the integration proceeds as 
in the previous section, substituting V&h-) for 

5 (0 

i+wA = 0, A) 

PC/2 1 

det(RYc)‘i2 

x exp [ $ Wd&J)]. (7) 

In the general case it is easier t0 note that eA will 
appear in a quadratic form and that Eq. (7) is 
a special case: 

1 PC12 

@leAvA) = (zxa,2)N/2 
1 

det (Ry&” 

where G and f are expressions in terms of compo- 
nents of R,. 
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3. Confidence interval analysis 

3.1. Derivation of the test statistic 

Suppose that we wish to compare two models 
which are nested so that the larger has some addi- 
tional terms over the other. The model selection 
question is, then, ‘are these additional terms re- 
dundant?‘. If the additional terms do not contribute 
usefully to the model, it should be possible to assign 
zero values to their corresponding parameters 
without penalty. By calculating the posterior prob- 
ability distribution of the additional parameters by 
integrating out the common parameters, we can 
assess the evidence for this. Using Bayes’ rule, 

(9) 

We can take a classical statistics approach using 
the following hypothesis test. 
;xb: the additional parameters all have the value 0. 
X”,: at least one of the additional parameters is 

non-zero. 
If we calculate the magnitude of the mean after 
normalisation by the covariance matrix, we can see 
whether there is statistical evidence in the classical 
sense to reject the null hypothesis. Consider Eq. (8). 
If p(0,j At’) is incorporated, then G is modified in 
a similar way to R and the numerator term of (9) is 
in the form 

x exp -$([e,‘-f’G,‘] G,[& - G,‘f] 
e 

+ ~,c@c) -f’G,‘f) 
1 
. (10) 

If & were then integrated out, the result would be 
p(dlM) - Eq. (4). Thus, 

V,,(&) -f’G,‘f= V,(6). 

Now, OA has mean Cl; ‘f and covariance 
(o~/N)G; ‘. As the number of data points in- 
creases, this covariance estimate becomes more ac- 
curate and the following test statistic takes a x2 

distribution with the number of degrees of freedom 
equal to the number of additional parameters: 

22 = /JTs- 1p 

= $fTG;'f 

= $ [v,,(e) - If@)]. 
e 

(11) 

3.2. Comparison with AK 

If the statistic given by Eq. (11) exceeds a certain 
value, we must reject the null hypothesis and 
choose the alternative one. Thus we say that, for 
a predetermined significance level, we have evid- 
ence that the additional parameters have non-zero 
values and so contribute usefully to the model. As 
the data-set size increases over, say, 30 points the x2 
threshold becomes approximately proportional to 
the number of degrees of freedom or the number of 
additional parameters, P - PC. Variations from 
proportionality imply that we use a slightly differ- 
ent significance level depending on the number of 
additional parameters. We can then rewrite the test 
as, for some constant k, 

(12) 

kP, + $ Vyc (6) > kP + $ I’,@) 
e e 

(13) 

Thus we should select the model with the minimum 
value of 

(14) 

or 

In (PhIAd@) + y? (15) 

where pMAP(6) is the maximum a posteriori prob- 
ability for a known value of the innovations 
variance. This is similar to Akaike’s information 
criterion (AIC),_since foe a uniform prior, or as y2 
increases, pMAP(6) + L(8). 
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The main drawback is that the probability of 
making the wrong selection remains constant as the 
data-set size is increased. This is an inconsistency 
and is known, for statistical hypothesis tests, as 
Lindley’s or Jeffrey’s paradox [6]. Suppose that the 
simpler model is correct: even with a large number 
of data points, the probability with which the clas- 
sical statistical hypothesis test chooses the more 
complex model does not fall! 

4. Bayesian hypothesis test 

4.1. Bayesian sharp null-hypothesis test 

In Section 3.1 we introduced the idea of testing 
two hypotheses: 
Ho: eA E eO, the additional parameters all have 

the value 0. 
2,: eAE@i, at least one of the additional 

parameters is non-zero. 
The Bayesian approach to model selection involves 
assigning probabilities to models to represent the 
degree of belief we have in them. We need to assign 
prior probabilities to the two hypotheses and these 
are generally denoted as a0 and nl. On the whole 
we do not have any reason to favour either model 
so we make each equal to a half. Denote the 
posterior probabilities of the two hypotheses 
based on the evidence provided by the measured 
data as p. and pl. We reject the more complex 
model if p. > pl. The Bayes factor B is generally 
defined as 

B = PO/Z0 PO =1 -=-- 

Plh Pl no’ 

We can write 

(16) 

PO = PWold), (17) 

no = PWO), (18) 

with corresponding expressions for Zi. Using 
Bayes’ rule (9), 

PO = 
noP(4 20) 

p(d) ’ 
(19) 

where p(d) takes a value to satisfy p. + p1 = 1. But 

P(O*I X0) = 
1, 0*=0, 

0 otherwise. 

So if 7ro = x1, 

B = p(dleA = 0) 
PI(~) ’ 

w-9 

(21) 

where p1 (d) is the probability of the data occurring 
under Xi. Using this, one can compare a sequence 
of models constructed by progressively adding 
terms. The simpler of any two models is to be 
preferred if B > 1. Thus one criterion can be used to 
make all the comparisons. This criterion is the 
probability of the data occurring under the model, 
integrating out all parameters in the model and 
zeroing all those excluded. From Eq. (4), 

(22) 

If we multiply the logarithm of the result by - 2 we 
obtain 

+P[lnN+In(y2)], (23) 

which should be minimised. 

4.2. Comparison with Bayesian evidence 

The principles of Bayesian evidence date back to 
1939 [S] although the form shown here is more 
recent [9]. ‘Bayes factors’ in the sense of odds ratios 
of model probabilities [4, 111 perform essentially 
the same function. The Bayesian evidence criterion 
is similar to the hypothesis test - a degree of belief is 
assigned to each model by finding posterior prob- 
abilities. We make use of Bayes’ rule again: 

(24) 

We can use this to decide between two model 
hypotheses A?0 and A, in the same fashion as 
deciding between two statistical hypotheses 
Ho and ~?i. We do not normally have any reason 



J. A. Stark, W. J. Fitzgerald / Signal Processing 46 (I 995) I69- I78 175 

to favour either model, and so assign equal values 
to p(d). The probability of the data realisation 
occurring in either model, p(d), is common to the 
expressions for the two models, so the model with 
the higher value of the Bayesian evidence p(dlA!) 
should be chosen. This can be extended to all model 
comparisons, so the one with the highest evidence 
should be selected. In the light of the discussion in 
this paper, a reasonable formulation of the models 
might be as follows. Make all models have the same 
superset of parameters. Assign a Gaussian prior to 
those parameters that are ‘in’ each model, and 
a sharp zero prior to those that are ‘out’. These 
parameters are then integrated out, 

But we are considering a particular class of model 
with a common parameter set, hence we can write 

and so the evidence criterion is the same as the 
Bayesian hypothesis test. 

4.3. Comparison with BIC 

The form of the Bayesian information criterion 
for the models in question is 

(27) 

where the subscript P denotes the quantities for 
a Pth-order model fit. This clearly comprises some 
of the terms of Eq. (23). One of the additional terms 
is (In det (&/al)), which remains approximately 
constant as redundant model terms are added, and 
is relatively small in magnitude even for modest N. 
The Pln N term is a penalty (‘Ockham’) factor 
against complexity. By adding ln(y’) into this the 
penalty is changed. Note that, because of overfit- 
ting, the N1/,(8) term always decreases as the model 
is enlarged. The Ockham factor should compensate 
for this decrease. If it is believed that the parameters 
are likely to take small values, then more weight 

should be given to the interpretation that the 
error-variance decrease is due to better modelling, 
and therefore we wish to reduce the complexity 
penalty. 

5. Numerical simulation 

A Gaussian white noise sequence was filtered 
using a fourth-order autoregressive model with 
poles at 0.8, -0.75, 0.48 + 0.64i and 0.48 - 0.64i. 
The innovations sequence had a variance of 1. The 
output sequence was split into 100000 segments, 
each of length 100. AIC (k = 2), BIC and Bayesian 
evidence (BEV) were calculated for models up to 
order 10. In order to perform a simulation of this 
size, efficient decompositions of the matrices were 
required. The autocorrelation method was used 
instead of the covariance method [13] so that the 
matrices R, were Toeplitz and more easily ana- 
lysed. This has a slight effect on the results such as 
introducing a bias into the parameter estimates. 
A linear autoregressive model was chosen so that 
a very large number of sequences could be 
simulated; the example illustrates the relationship 
between parameter estimates and the preference of 
one model over another. The behaviour for non- 
linear models is the subject of ongoing research. 

There is no intention to explore the issue of 
priors for parameter distributions in this paper. It 
should in principle be possible to incorporate 
knowledge such as the need for the model to be 
asymptotically stable, although this would be diffi- 
cult in practice. Some estimate of the parameter 
variance is necessary in order to calculate the cri- 
teria. The parameters, and especially the last para- 
meters, of an AR model typically have values less 
than 1. Therefore a standard deviation y = 0.5 was 
chosen for this experiment. 

The results of the simulation are shown in 
Table 1. The fact that, in general, AIC overestimates 
and BIC underestimates the model order is clearly 
demonstrated. Since the Ockham factor is propor- 
tional to P and the determinant term is small, the 
comparison of a model with the next smallest one 
amounts to a confidence-interval analysis for each 
criterion. This is illustrated in Table 2; there is an 
erroneous acceptance rate of about 16% for AIC 
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Table 1 
The frequency (X) of preference of each order of AR model 

1 2 3 4 5 6 7 8 9 10 

AIC 0.1 1.5 1.0 68.7 11.2 6.1 3.8 2.7 2.3 2.6 
BIC 2.3 10.0 2.8 80.4 3.0 0.7 0.2 0.1 0.2 0.3 
BEV 0.7 4.5 1.9 81.2 6.5 2.3 1.0 0.6 0.5 0.8 

Table 2 
The frequency (%) with which each order of model was selected in preference to the next smallest 

2 3 4 5 6 7 8 9 10 

AIC 92.6 66.6 98.0 16.5 16.8 16.7 16.5 16.5 16.7 
BIC 84.1 45.6 92.0 3.7 3.9 3.8 3.7 3.9 3.9 
BEV 88.2 55.0 95.9 8.2 8.5 8.4 8.4 8.6 8.8 

that would remain the same if more data were 
available. The results for BEV are interesting - the 
rate with which the correct model is selected is 
about the same, whereas there is more balance 
between over- and underestimation. We have as- 
sumed knowledge of the variance of the excitation 
sequence; errors in the estimation of this will also 
lead, effectively, to a slightly different Ockham pen- 
alty and hence a different balance between the 
selection of higher- and lower-order models. 

The comparison between models of adjacent 
order is illustrated further by the distribution of the 
estimate of the additional parameter, that is the last 
parameter in the larger model (Fig. 1). The distribu- 
tions for models of order greater than 4 are nearly 
the same. The segments for which orders higher 
than 4 were erroneously selected correspond to 
estimates of parameters that lie in the tails of these 
distributions. The distributions for orders 2 and 
4 are more easily identifiable as non-zero than that 
for order 3, and this is reflected in Table 2. This 
illustrates an interesting phenomenon: some 
parameters are better determined from the data 
than others. In this case the last parameter of 
the third-order AR model is less well-determined. 
Some models are more easily identified than others; 
the magnitude of a parameter is not as important 
as its magnitude with respect to its estimation 
variance. 

4.5 , I I 
4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

Fig. 1. Distributions of the maximum a posteriori estimates of 
the last parameters in candidate AR models. The plots were 
generated from the numerical simulation. The distributions for 
larger models are similar to those of orders 5 and 6. 

It is important to point out that the model, 
data-set size and parameter priors can be chosen to 
‘prove’ almost anything. The example presented 
here was chosen to illustrate the main features of 
the selection criteria. 

6. Discussion 

A number of very different approaches have been 
used to assess model suitability. One common basis 
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has been that the received data must be a reason- 
able realisation of the model [ 12,8]. Some criteria 
involve more direct statistical or information-based 
comparisons of the residuals; the F-test arises out 
of such an approach. These have often yielded 
expressions similar to AIC, BIC and Bayesian 
evidence [7]. Bayes factors have already been 
mentioned [ll]. In this paper these expressions 
have been derived as hypothesis tests on the para- 
meters. This shows that the ability of a method to 
correctly identify the correct terms of a model de- 
pends on how well determined the parameters are. 
That is to say that if the variability of the estimate 
of a parameter is large with respect to its correct 
value then it is hard to identify the need to include 
that term. 

The issue of priors on the parameters is a difficult 
one and often overshadows the benefits of Bayesian 
techniques. This is true for model comparisons us- 
ing Bayesian evidence. We have shown that the 
standard Bayesian methods for model selection can 
be viewed as hypothesis tests on parameter values. 
It might therefore be argued that, rather than being 
an unfortunate necessity in assessing the posterior 
probabilities of models, these priors should be seen 
as a useful mechanism of incorporating belief in 
parameter magnitudes. Nevertheless, the fact that 
standard non-informative priors are usually unsuit- 
able presents a serious difficulty. There has been 
no intention to discuss priors in detail in this 
paper. However, techniques have been developed 
recently to use training sample and other resamp- 
ling paradigms [2]. These allow the use of a 
non-informative prior by inferring a posterior 
distribution of the parameters from a subset of 
data samples and then using this as the basis for 
the model selection test using some or all of the 
remaining samples. 

Parameter-based model selection might make 
use of numerical techniques such as bootstrap [3] 
in a variety of ways. They could be an alternative to 
the training sample methods for dealing with non- 
informative priors. Estimates of the parameters of 
additional terms (when comparing nested models) 
could be obtained from resampled data. The hy- 
pothesis that the parameters were zero could be 
tested using the estimated distributions. Numerical 
techniques might also be utilised when the statist- 

ical assumptions or the model structure restrictions 
made in this paper were relaxed. For example, if the 
prediction-error model distribution were non- 
Gaussian or if the model were non-linear in its 
parameters, then finding the maximum a posteriori 
parameters would be more difficult. In such situ- 
ations the probability of the observed data being 
a realisation of the model could be assessed for 
randomly sampled parameter combinations, again 
generating an estimate distribution of additional 
parameters. 

Finally, the link between the standard criteria 
and hypothesis tests on parameters may be of 
wider interest. For example, the detection of 
changepoints in signals often involves comparison 
of models in different segments. The suitability 
of candidate models might be assessed for each 
segment and compared, and we have seen that 
some of the criteria for this assessment are 
equivalent to parameter tests. One might instead 
look for changes in model parameters. Parameter- 
based hypothesis testing provides a common 
framework in which to consider these two 
approaches. 
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